Phase equilibria in the system $YPO₄-Na₃PO₄$

Wladyslawa Szuszkiewicz and Teresa Znamierowska

Department of Inorganic Chemistry, Faculty of Engineering and Economics, Academy of Economics, 118/120 Komandorska, 53345 Wroclaw (Poland)

(Received 18 January 1991)

Abstract

The phase diagram of the system $YPO₄-Na₃PO₄$ has been determined by differential, X-ray and microscopic methods. The system contains two intermediate compounds, Na, $Y(PO_A)$, and Na, $Y_2(PO_A)$, These double orthophosphates melt congruently at 1515 and 1635 °C, respectively. Compound Na₃Y(PO₄), shows a polymorphic transition at 850 °C and $Na_3Y_2(PO_4)$, shows one at 470 °C.

INTRODUCTION

The research on calcium-yttrium phosphates, carried out in our laboratory over several years, has led to some interesting results. However, literature reports indicate that phosphates containing alkali metals and lanthanides are also of interest. Therefore, we have initiated an examination of sodiumyttrium phosphates. These compounds occur in the ternary system Y_2O_{3-} $Na₂O-P₂O₃$. The present paper presents the results of our investigations on double sodium-yttrium orthophosphates. Literature reports show that two types of double orthophosphates are known: $M_3^L Ln^{III}(PO_4)$, type I; and $M_3^I L n_2^{\text{III}}(P_4)$, type **II**, where M^I = alkali metals, and $L n^{\text{III}}$ = lanthanides, SC, Y.

According to ref. 1, type **I** compounds containing Na and Y crystallise in the tetragonal system, the α -form. The second type of structure, the β - or high-temperature form, was described by these authors for Na–Gd and Na-Y compounds. This "high" temperature form exhibits X-ray diffraction patterns only slightly different from the "low" temperature form [l].

Salmon et al. [2] prepared type **I** compounds containing Na and La, Pr, ... and Y and assigned them to the orthorhombic system.

After examining literature data, Bamberger et al. [3] concluded "...that many, if not all, of the preparations identified as having the stoichiometry $Na₃Ln₂(PO₄)₃$ (type II) consist mainly of LnPO₄ with minor amounts of $Na₃Ln(PO₄)₂$ ".

Double orthophosphates, $Na₃Ln(PO₄)$, and $Na₃Ln₂(PO₄)$, according to their composition, occur in the system $Ln^{III}PO_{4}-Na_{3}PO_{4}$.

EXPERIMENTAL

The following reagents were used: Y_2O_3 , 99.99%; H_3PO_4 , 85%, analytical grade; $NH_aH₂PO_a$, analytical grade; $Na₃PO_a \cdot 12H₂O$, analytical grade; $Na₂CO₃$, analytical grade; and NaH₂PO₄, analytical grade. YPO₄, Na₃PO₄, $Y_2P_4O_{13}$ were synthesised in our laboratory. Yttrium orthophosphate, YPO₄, was obtained from solution by the method given in ref. 4. $Y_2P_4O_{13}$ phosphate was prepared from Y_2O_3 and $NH_AH₂PO_A$ according to ref. 5. Sodium orthophosphate, Na, PO₄, was obtaining by slow dehydration of Na, PO₄ · 12 H₂O at 200, 300 and then at 600° C.

The binary system $YPO_4-Na_3PO_4$ was examined by differential thermal analysis, X-ray powder diffraction and microscopic examination in reflected light. Test samples were presynthesised by reaction in the solid phase. Molten and sintered samples were used for the investigations. Differential thermal analysis in heating mode was performed by means of a derivatograph type 3427 (MOM, Hungary) within the temperature range $20-1400$ °C (platinum cup, air atmosphere). High-purity alumina was used as the standard substance. In the thermal analysis, a furnace constructed in our laboratory was also used. Temperatures were read by means of a Pt/PtlORh thermocouple, which was calibrated against the melting points of $Ca₂P₂O₇$, K_2SO_4 , NaCl and the transition point of K_2SO_4 (583°C). The high-temperature thermal studies above 1400 "C were performed in a horizontal resistance furnace with molybdenum winding, under argon. Test samples were presynthesised by reaction in the solid phase, pelletised, placed in a Pt30Rh boat and melted. Melting points were read by means of an optical pyrometer, which was calibrated against the melting points of $Na₃PO₄$ and $Ca_3(PO_4)_2.$

The quenching technique was also used for phase determination. The phases were identified by X-ray powder diffraction on an HZG-4 diffractometer (a Guinier camera) with Cu K α radiation.

The phase purity of the reagents and the phase structure of the products were studied microscopically (microsections were examined in reflected light).

RESULTS AND DISCUSSION

The double orthophosphates mentioned in the introduction can occur in the systems $Ln^{III}PO₄-M₃^TPO₄$, according to their composition. The present paper describes phase examinations of the $YPO₄-Na₃PO₄$ system. This system was previously unknown and has been investigated in our laboratory across the full composition range and within the temperature range 20- $1700\degree$ C. Its phase diagram is presented in Fig. 1. This shows that samples melt above $1400\degree$ C in nearly the entire system. Therefore, the liquidus curve and some solidus curves as well, were drawn on the basis of observations

Fig. 1. Phase diagram of the system $YPO_4-Na_1PO_4$: \circ , thermal analysis (heating); \times , optical.

made with pelletised samples in a horizontal electric furnace. The temperatures were read by means of an optical pyrometer. Therefore the positions of the liquidus and solidus curves are approximate. Equilibria in the solid phase were determined on the basis of the thermal analysis during heating of both molten and sintered samples.

The investigations proved that two intermediate compounds occur in the $YPO₄-Na₃PO₄$ system. They are formed in 2:1 molar ratio $YPO₄:Na₃PO₄$ (30.83 wt.% Na₃PO₄, 69.17 wt.%YPO₄) and in 1:1 molar ratio (47.13 wt.%) $Na₃PO₄$, 52.87 wt.% YPO₄), i.e. $Na₃Y₂(PO₄)₃$ and $Na₃Y(PO₄)₂$, respectively. Phosphate $\text{Na}_3\text{Y}_2(\text{PO}_4)$, melts congruently at approx. 1635°C and is stable down to room temperature. It was discovered that it shows a polymorphic transition at 470 $^{\circ}$ C (a strong thermal effect occurs at this temperature on the DTA curve of the sintered sample). The high-temperature modification (α) cannot be stabilised at room temperature by quenching, either in air or in ice.

Phosphate Na₃ $Y(PO₄)$, melts congruently at approximately 1515^oC and is stable down to room temperature. During differential thermal analysis of a sintered sample with the composition of this compound, a strong thermal effect occurs at $850\degree$ C on the DTA curve. We conclude that it results from the polymorphic transition, α -Na₃Y(PO₄)₂ $\rightarrow \beta$ -Na₃Y(PO₄)₂. The examinations showed that the high-temperature modification (α) can be stabilised at room temperature by rapid cooling in ice.

Several attempts were made to find the best method of synthesis for both these double orthophosphates in pure form. It was discovered that compound $Na_3Y(PO_4)$, is formed more easily. It can be obtained by means of several different reactions:

(1) $\text{Na}_3\text{PO}_4 + \text{YPO}_4 \rightarrow \text{Na}_3\text{Y}(\text{PO}_4)$, (900 °C for 15 h);

(2) $Y_2P_4O_{13} + 3Na_2CO_3 \rightarrow 2Na_3Y(PO_4)_2 + 3CO_2$ (850 °C for 24 h and then $900\degree$ C for 15 h);

(3) $Y_2O_3 + 4NaH_2PO_4 + Na_2CO_3 \rightarrow 2Na_3Y(PO_4)_2 + CO_2 + H_2O$ (200, 300 and 500° C for 24 h and then 900° C for 15 h).

Attempts to synthesise phosphate $Na_3Y_2(PO_4)$, proved that: (1) if the mixture of 2:1 stoichiometric ratio of YPO₄ and Na₃PO₄ is sintered or melted, a mixture of $Na_3Y(PO_4)$, and $Na_3Y_2(PO_4)$, is obtained in the reaction products; and (2) if the mixture of one mole of Y_2O_3 and three moles of NaPO₃ is sintered at 800°C, YPO₄ and Na₃Y(PO₄)₂ are obtained. However, as a result of sintering at $1000\,^{\circ}$ C for 15 h, pure phosphate phase, $Na_3Y_2(PO_4)_3$, is obtained.

Difficulties in obtaining phosphate $Na_3Y_2(PO_4)$, complicated the research on the $YPO_4-Na_3PO_4$ system. The determination of its phase diagram was preceded by different thermal examinations and the phase compositions of the products obtained were identified each time by X-ray diffractometry. It was discovered, for example, that if samples from the $YPO₄-Na₃PO₄$ system are synthesised from initial orthophosphates, these compounds together with $Na₃Y(PO₄)$, are usually present in the reaction products (in both sintered and molten samples).

Finally, the phase diagram presented in Fig. 1 was determined on the basis of the following procedure. It was assumed that the $YPO₄-Na₃PO₄$ system is composed of three partial binary systems: (1) $YPO₄ – Na₃Y₂(PO₄)₃;$ (2) $\text{Na}_3\text{Y}_2(\text{PO}_4)_3 - \text{Na}_3\text{Y}(\text{PO}_4)_2$; and (3) $\text{Na}_3\text{Y}(\text{PO}_4)_2 - \text{Na}_3\text{PO}_4$. Each of these systems was examined separately, i.e.:

- samples from the first system were synthesised from $YPO₄$ and $Na_1Y_2(PO_4)$, by sintering at 1100 °C for 3 h and then melting;

- samples from the second system were synthesised from $Na_3Y_2(PO_4)_3$ and Na₃ $Y(PO₄)$, by sintering at 1000°C for 3 h and then melting;

- samples from the third system were synthesised from $Na₃Y(PO₄)₂$ and $Na₃PO₄$ by sintering at 900°C for 3 h and then melting.

During this, it was discovered that each of these partial systems is eutectic. To summarise, in the $YPO₄-Na₃PO₄$ system, there are three eutectics: e_1 at 1585°C containing approx. 22 wt.% Na₃PO₄, e_2 at 1495°C containing approx. 45 wt.% $Na₃PO₄$ and e₃ at 1320°C containing 63 wt.% $Na₃PO₄$.

According to literature data, sodium orthophosphate, $Na₃PO₄$, shows

many polymorphic transitions. During our experiments, we detected only four of them, namely: $\alpha \rightarrow \beta'$ (1325°C); $\beta' \rightarrow \beta$ (1186°C); $\beta \rightarrow \gamma'$ (914°C); and $\gamma' \rightarrow \gamma$ (420°C). In the partial system $\text{Na}_3\text{Y}(\text{PO}_4)_2 - \text{Na}_3\text{PO}_4$, on the DTA curve, within the approximate composition range 55–65 wt. $%$ Na₃PO₄, a very strong thermal effect occurs at around 400° C. It results (probably) from the $\gamma' \rightarrow \gamma$ -Na₃PO₄ polymorphic transition. This effect does not appear in that part of the system rich in $Na₃PO₄$; nor are the effects connected with another polymorphic transition of $Na₃PO₄$ observed. This may result from the fact that there is a limited solubility of components in the liquid state, within the approximate composition range $75-100$ wt.% Na₃PO₄ at high temperatures (around 1540 $^{\circ}$ C). Therefore the liquid is divided into two liquid solutions: L_1 and L_2 . There is a field of stability of liquid solutions with unlimited mutual phase solubility above point B (Fig. 1), over the liquidus curve. In the ABM field, the mixture of liquid solutions, $L_1 + L_2$, is stable. To the left of this field, over the liquidus curve, there is a monophase field of stability of liquid solution L_1 ; and on the right, there is a monophase field of stability of liquid solution $L₂$. Between the liquidus curve and the solidus curve, there are two-phase fields. At point M (a monotectic point), at the constant temperature of approx. $1540\degree$ C (monotectic temperature), a monotectic transition proceeds according to the reaction: $L_{2M} \rightarrow Na_{3}PO_{4}$ + L_{1A} (where L_{2M} is liquid L_2 with the composition of point M, and L_{1A} is the liquid L_1 with composition corresponding to point A).

REFERENCES

- **1 M. KizilyaIIi and A.J.E. Welch, in G.J. McCarthy and J.J. Rhyne (Eds.), The Rare Earths in Modem Science and Technology, Plenum Press, New York, 1977, p. 209.**
- **2 R. Salmon, C. Parent, A. Berrada, R. Brochu, A. Daoudi, M. Masse and G. Le Flem, C.R. Acad. Sci. Paris, 280 (1975) C-805.**
- **3 C.E. Bamberger, R.G. Haire, G.M. Begun and L.C. ElIingboe, Inorg. Chim. Acta, 95 (1984) 49.**
- **4 W. Szuszkiewicz and T. Znamierowska, J. Solid State Chem., 86 (1990) 406.**
- 5 D. Agrawal and F.A. Hummel, J. Electrochem. Soc., 127 (1980) 1550.